

	1			
	DPP – 1 (EM Waves)			
Video Solution on Website:-	https://physicsaholics.com/home/courseDetails/45			
Video Solution on YouTube:-	https://youtu.be/HFmNr5-9LVk			
Written Solution on Website:-	https://physicsaholics.com/note/notesDetalis/67			
Q 1. If \vec{E} and \vec{B} are the electron of propagation of F (a) \vec{E} (c) $\vec{E} \times \vec{B}$	ectric and magnetic field vectors of E.M. waves then the direction E.M. wave is along the direction of (b) \vec{B} (d) none of these			
Q 2. In an electromagne 48 V/m. The RMS (a) 1.6×10^{-8} T (c) 144×10^{8} T	tic wave, the electric field oscillated sinusoidally with amplitude value of oscillating magnetic field will be (b) 16×10^{-8} T (d) 11.3×10^{-8} T			
Q 3. In a plane EM way 2.5×10^{10} Hz and a be, (a) 1.6×10^{-8} Wb (c) 1.6×10^{-6} Wb	The electric field oscillates sinusoidally at a frequency of amplitude 480 V/m. The amplitude of oscillating magnetic field will p/m^2 (b) $16 \times 10^{-8} Wb/m^2$ (c) $16 \times 10^{-6} Wb/m^2$			
Q 4. In a plane EM way 6.0×10^{-6} T. The a (a) 1.8 V/m (c) 1800 V/m	e of frequency 1.5×10 ¹² Hz, the amplitude of the magnetic field is mplitude of the electric field will be? (b) 180 V/m (d) 120 V/m			
Q 5. Displacement curre (a) Continuous wh (b) Continuous wh (c) Continuous in t (d) Continuous thre	ent is en electric field is changing in the circuit en magnetic field is changing in the circuit ooth type of field oughout wires and resistance only			
Q 6. A capacitor has been (I_c) and displacement (a) $I_d = I_c = 1$ (c) $I_d = 1, I_c = 0$	en charged by a DC source. What are the magnitude of conduction ent (I_d) current when it is fully charged? (b) $I_d = I_c = 0$ (d) $I_d = 0, I_c = 1$			
Q 7. A parallel plate ca separated by 4.0n charging current i potential differen (a) 1.44×10^9 V/s	pacitor made of two circular plates each of radius 10 cm and nm. The capacitor is being charged by an external source. The is constant and equal to 0.10A. Calculate the rate of change of ce between the plates and the displacement current ec, 0.10 A			

- (a) $1.11 \times 10^{-1.16}$ V/sec, 0.10 A (b) 1.44×10^{9} V/sec, 0.05 A (c) 2.11×10^{10} V/sec, 0.10 A

(d) 2.11×10^{10} V/sec, 0.05 A

- Q 8. In electromagnetic wave the phase difference between electric and magnetic field vectors \vec{E} and \vec{B} is -
 - (b) $\frac{\pi}{\frac{2}{\pi}}$ (d) $\frac{\pi}{\frac{4}{\pi}}$ (a) 0 (c) π
- In a plane EM wave of frequency 1.5×10^{12} Hz, the amplitude of the magnetic field is Q 9. 6.0×10^{-6} T. What is the total average energy density of the e.m. wave? (a) $1.4 \times 10^{-5} I/m^3$ (b) $1.6 \times 10^{-3} I/m^3$ (c) $2.4 \times 10^{-5} I/m^3$ (d) $4.2 \times 10^{-5} I/m^3$
- Q 10. In an electromagnetic wave, the amplitude of electric field is 10V/m. The wave is propagating along Z-axis, find the average energy density of magnetic field (a) $1.2 \times 10^{-9} \text{ J/m}^3$ (b) $2.2 \times 10^{-10} \text{ J/m}^3$ (c) 4.1×10^{-9} J/m³ (d) 3.2×10^{-10} J/m³
- Q 11. The rms value of electric field of a plane electromagnetic wave is 314 V/m. The average energy density of electric field and the total average energy density are

Answe

- (a) $4.3 \times 10^{-7} \text{ J/m}^3$, $2.15 \times 10^{-7} \text{ J/m}^3$ (b) $4.3 \times 10^{-7} \text{ J/m}^3$, $8.6 \times 10^{-7} \text{ J/m}^3$
- (c) $2.15 \times 10^{-7} \text{ J/m}^3$, $4.3 \times 10^{-7} \text{ J/m}^3$
- (d) $8.6 \times 10^{-7} \text{ J/m}^3$, $4.3 \times 10^{-7} \text{ J/m}^3$

O)(O)	NO				
Q.1 c	Q.2 d	Q.3 c	Q.4	c	Q.5 a
Q.6 b	Q.7 a	Q.8 a	Q.9	a	Q.10 b
Q.11 b					